

The ecology, epidemiology and zoonotic potential of MERS-CoV

Leo Poon

Centre of Influenza Research & School of Public Health

LKS Faculty of Medicine

The University of Hong Kong

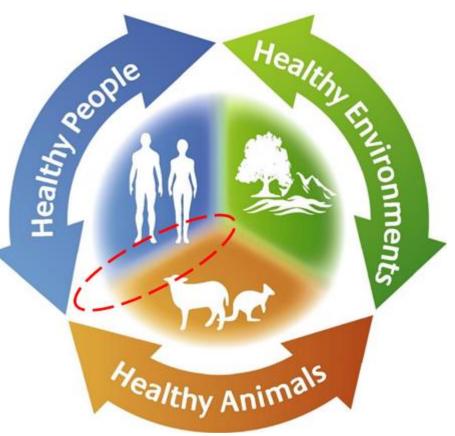
llmpoon@hku.hk

GF -TADS Conference on Camel Diseases Abu Dhabi, 14-16 February 2016

One Health

335 EID events (1940-2004): 60% are zoonotic origin (Jones et al., Nature 2008)

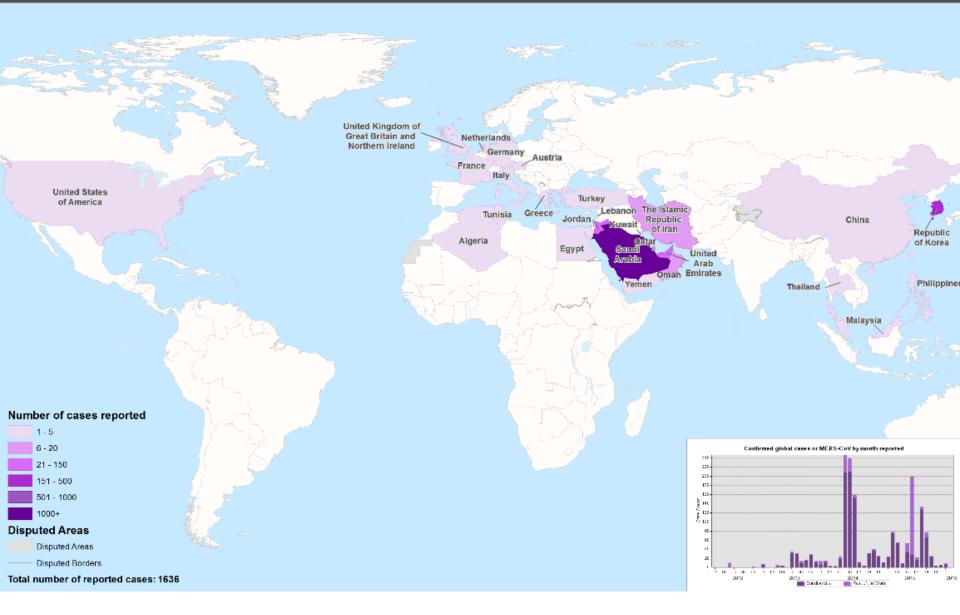
Examples:


Animal coronavirus

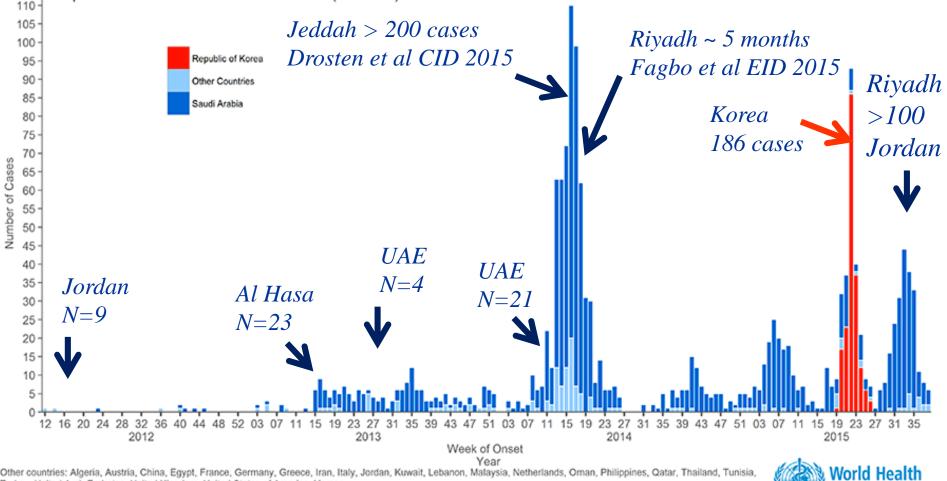
- SARS
- MERS

Animal influenza virus

- Pandemic H1N1
- H5N1
- H7N9


The One Health Triad

Outline


- Animal hosts / source of zoonotic infection
- MERS-CoV genetic and antigenic diversity
- Therapy/Vaccine?

CONFIRMED GLOBAL CASES OF MERS-COV 2012 - 2016

Epidemic Curve of MERS: Up to 09 October 2015

Reported to WHO as of 09 Oct 2015 (n=1595)

Organization

Other countries: Algeria, Austria, China, Egypt, France, Germany, Greece, Iran, Italy, Jordan, Kuwait, Lebanon, Malaysia, Netherlands, Oman, Philippines, Qatar, Thailand, Tunisia, Turkey, United Arab Emirates, United Kingdom, United States of America, Yemen

Animal source of MERS-CoV?

Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study Lancet Infect Dis 2013

Chantal B E M Reusken*, Bart L Haagmans*, Marcel A Müller*, Carlos Gutierrez, Gert-Jan Godeke, Benjamin Meyer, Doreen Muth, V Stalin Raj, Laura Smits-De Vries, Victor M Corman, Jan-Felix Drexler, Saskia L Smits, Yasmin E El Tahir, Rita De Sousa, Janko van Beek, Norbert Nowotny, Kees van Maanen, Ezequiel Hidalgo-Hermoso, Berend-Jan Bosch, Peter Rottier, Albert Osterhaus, Christian Gortázar-Schmidt, Christian Drosten, Marion P G Koopmans

Eurosurveillance 2013

Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013

R A Perera^{1,2}, P Wang^{2,3,4}, M R Gomaa⁵, R El-Shesheny⁵, A Kandell⁵, O Bagato⁵, L Y Siu³, M M Shehata⁵, A S Kayed⁵, Y Moatasim⁵, M Li³, L L Poon¹, Y Guan¹, R J Webby⁶, M A Al⁵, J S Peirls (malik@hku.hk)¹, G Kayali (ghazi.kayali@stjude.org)⁶

Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation Lancet Infect Dis 2014

Bart L Haagmans^{*}, Said H S Al Dhahiry^{*}, Chantal B E M Reusken^{*}, V Stalin Raj^{*}, Monica Galiano, Richard Myers, Gert-Jan God Elmoubasher Farag, Ayman Diab, Hazem Ghobashy, Farhoud Alhajri, Mohamed Al-Thani, Salih A Al-Marri, Hamad E Al Romc Abdullatif Al Khal, Alison Bermingham, Albert D M E Osterhaus, Mohd M AlHajri, Marion P G Koopmans

Evidence for Camel-to-Human Transmission of MERS Coronavirus

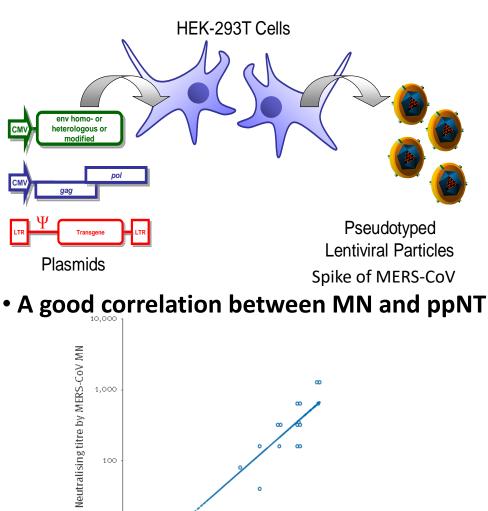
Esam I. Azhar, Ph.D., Sherif A. El-Kafrawy, Ph.D., Suha A. Farraj, M.Sc., Ahmed M. Hassan, M.Sc., Muneera S. Al-Saeed, B.Sc., Anwar M. Hashem, Ph.D., and Tariq A. Madani, M.D. **NEJM 2014** Emerg Infect Dis 2014

MERS Coronavirus in Dromedary Camel Herd, Saudi Arabia

Maged G. Hemida,¹ Daniel K.W. Chu,¹ Leo L.M. Poon, Ranawaka A.P.M. Perera, Mohammad A. Alhammadi, Hoi-yee Ng, Lewis Y. Siu, Yi Guan, Abdelmohsen Alnaeem, and Malik Peiris

Serological surveillance of MERS-CoV using

pseudotyped virus in a **BSL2** facility

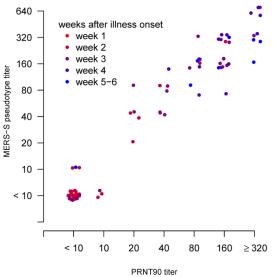

MERS (Euro Surveill. 2013) Ebola (Clin Chem, 2015)

10 <

<20

100

H5N1 (J Clin Virol, 2010)


1,000

Neutralising titre by MERS-CoV ppNT

100.000

10.000

Human sera from the MERS outbreak in Seoul

•Good specificity

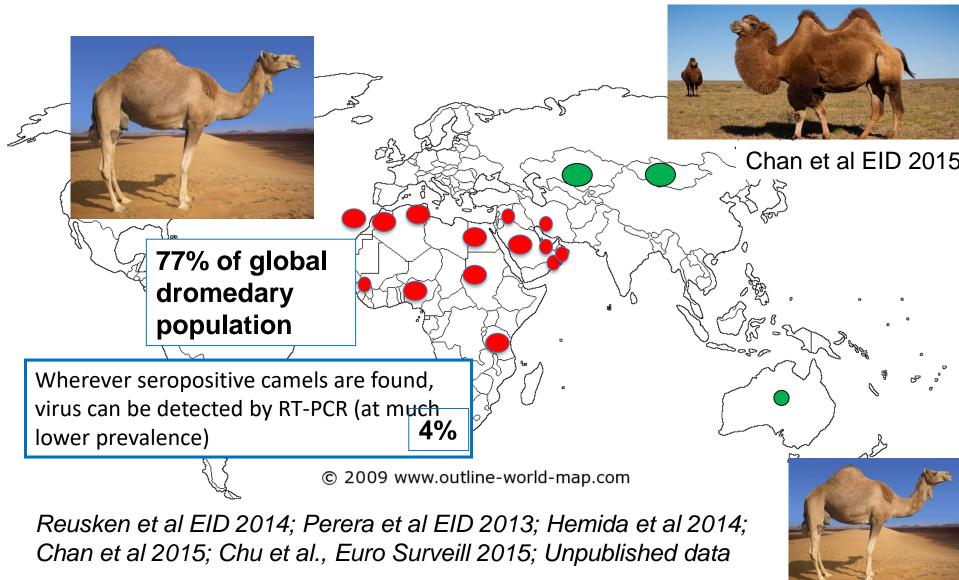
Control serum positive for:

CCoV BCoV TCoV TGEV SARS-CoV PRCoV MHV FIPV

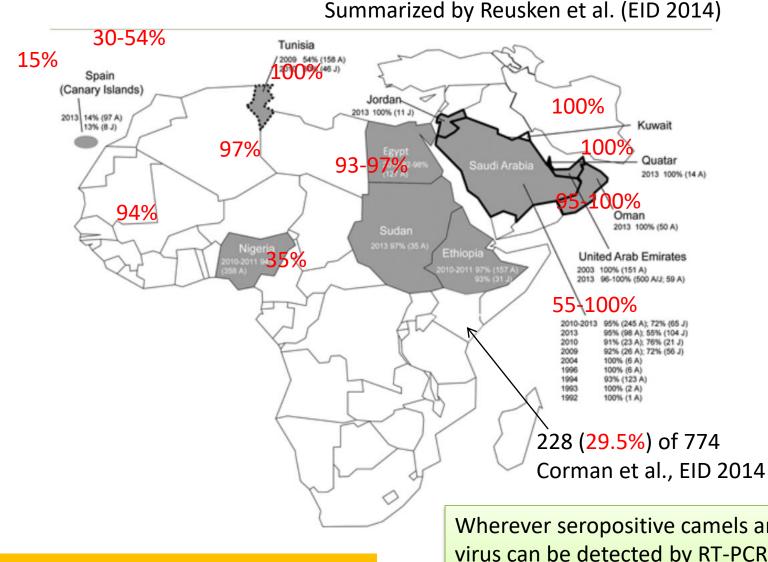
All negative in the assay

Euro Surveill. 2014; Euro Survieill. 2015

EID 2015

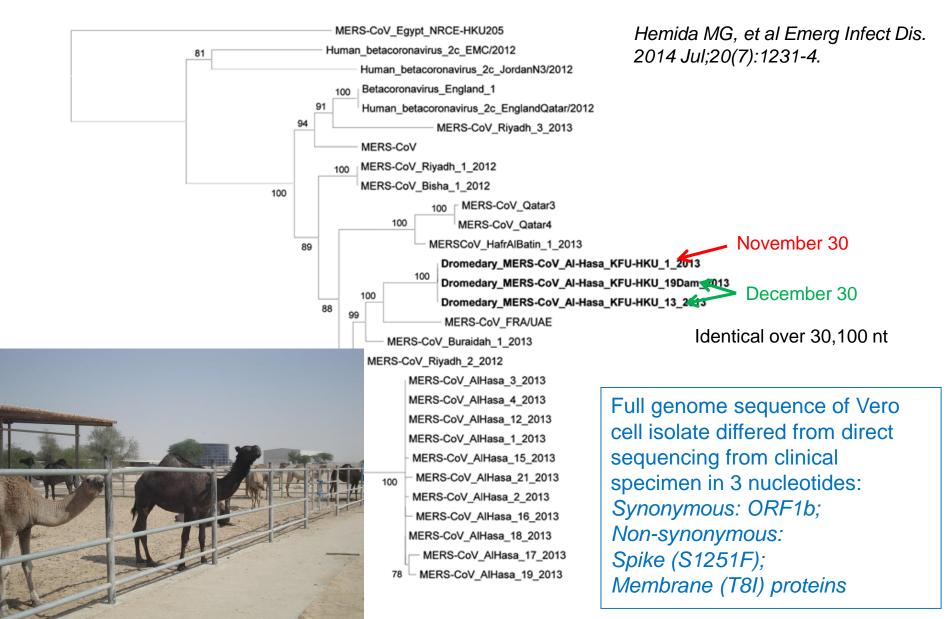

Sero-prevalence studies in animals and humans (ppNT/MN)

Animal	KSA	Egypt
Camels	310 (90%)	110 (94%)
Camels (1993)	131 (96%)	
Goats	144 (0%)	13 (0%)
Sheep	199 (0%)	5 (0%)
Cattle	101 (0%)	8 (0%)
Chicken	351 (0%)	
Human	350 (0%)	815 (0%)


Perera et al Eurosurveill 2013; Hemida et al Eurosurv 2013; Chu et al EID 2014; Chan et al EID 2015; Miguel et al EID – submitted; Unpublished data

MERS CoV: MERS-CoV active Geographic range and species

No MERS-CoV


How widespread of MERS-CoV in dromedary camels?

Camel sera sampled in Sudan in1983 are seropositive for MERS-CoV (Muller et al., EID 2014)

Wherever seropositive camels are found, virus can be detected by RT-PCR (at much lower prevalence)

Full genome sequence phylogenetic tree of MERS-CoV transmission within a camel herd over 1 month

A dromedary herd with virus transmission for 1 month

Table 1. RT-PCR of dromedary camel samples for MERS-CoV, Al-Hasa, Saudi Arabia*

	Age†/no.		No. specimens positive/no. tested			
Farm, sampling date	sampled	Nasal	Oral	Fecal		
Farm A		·				
2013 Nov 30	Calf, 0	ND	ND	ND		
	Adult, 4	1/1	0/2	0/4		
2013 Dec 30	Calf, 8	7/8	0/1	0/6		
	Adult, 3	1/3 ‡	0	1/3 ‡		
2014 Feb 14	Calf, 7	0/7	ND	0/7		
	Adult, 2	0/2	ND	0/2		

• Nasal > faecal

 Duration of shedding < 1 month

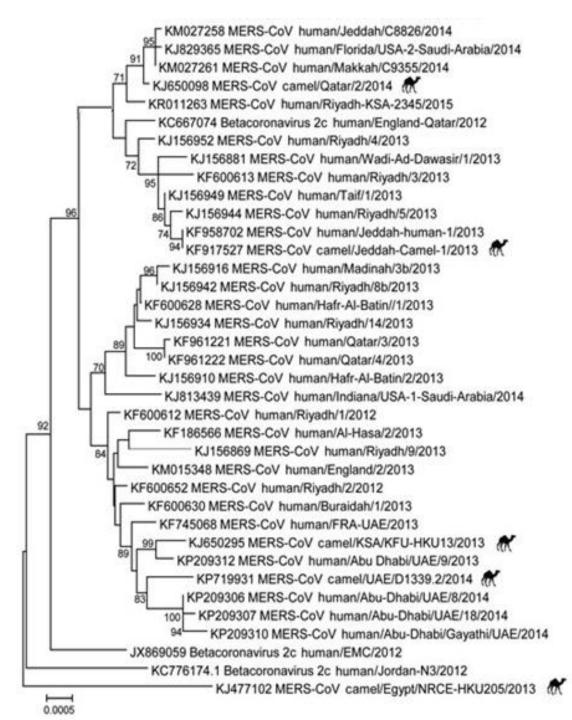
Hemida et al EID 2014

Contacts:

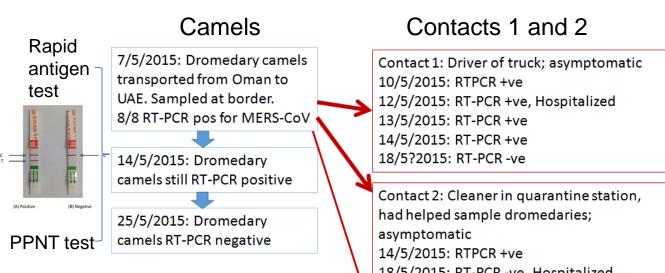
Herdsman n=4

Other staff in contact with herd n=8

Staff in camel hospital n=30


General population = n=146

All sero-negative


Transmission to humans is inefficient

Hemida et al EID 2015

Multiple introduction of MERS-CoV from camel to human

Asymptomatic MERS-CoV Infection in Humans Linked to Infected Dromedaries

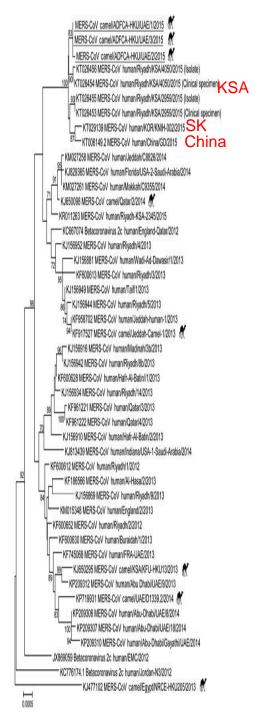
Viral RNA sequence from dromedaries were identical with each other. Human sequences were also identical but only short fragments were available.

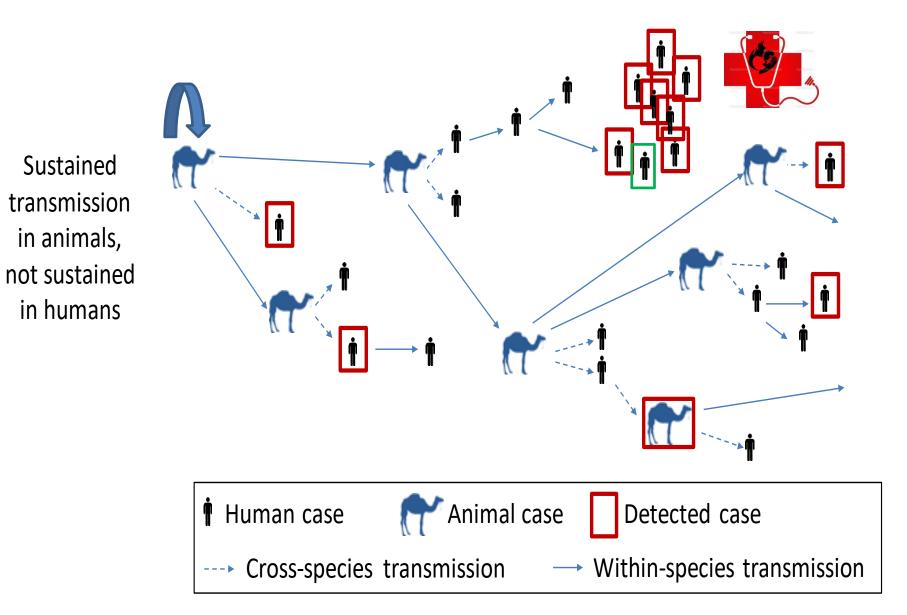
18/5/2015: RT-PCR -ve, Hospitalized 21/5/2015: RT-PCR -ve

32 other contacts of dromedaries

粘 眀

物迹


All RT-PCR -ve



Al Hammadi et al., EID 2015

Epidemiology of MERS-CoV: What we know

Modified from Ferguson & Van Kerkhove 2014

Countrywide cross-sectional sero-epidemiological survey for MERS-CoV antibodies in Saudi Arabia

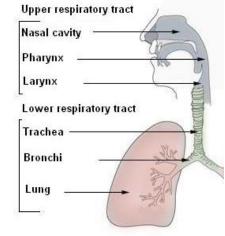
Population sampled	Sero-positives (NT test)			
	N (%)	95% CI	P value	
General population (>15 years of age) (n=10,009)	15 (0.2%)	(0.1-0.2%)	Reference	
Camel shepherds (n-87)	2 (2.3%)	(0.3-7.4%)	0.0004	
Slaughterhouse workers (n=140)	5 (3.6%)	(1.3-7.7%) Mulle	0.0001 er et al Lancet Infect L	Dis

- Estimated 44,951 (95% CI: 26,971-71,922) people > 15 years old have been infected with MERS-CoV in Saudi Arabia over their lifetimes
 - Total Saudi population is 29.8 million
- Median age of sero-positives younger than confirmed MERS cases (43.4 yrs vs. 53.8 yrs (p=0.008)
- Sero-prevalence of Men > Women (Men 0.25% > Women 0.05%) (p=0.28)
- Higher in central vs costal provinces

Subclinical infected human cases as the viral source in communities ?

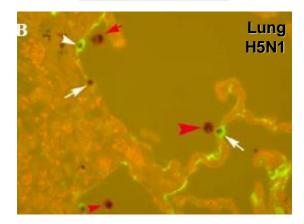
MERS-CoV genetic diversity: Does camel MERS-CoV from Africa have capacity to infect humans?

Ex vivo cultures - Human respiratory tract

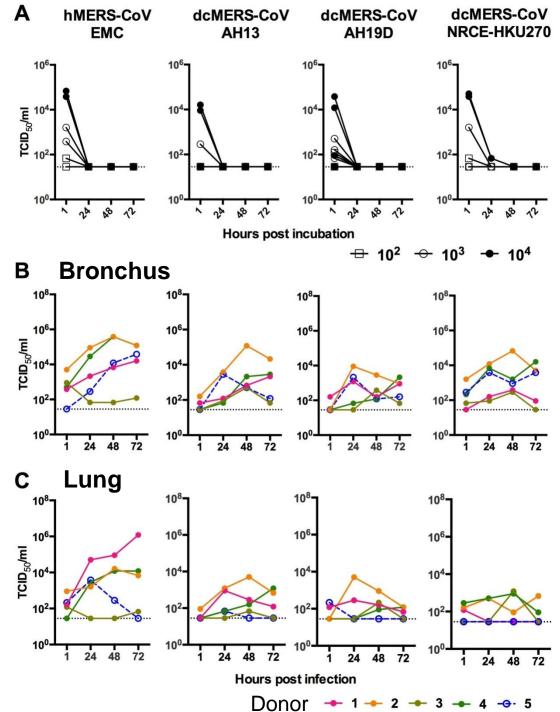

ALI culture = Air liquid interface culture; F12K medium

Nasopharyngeal

Bronchi



Lung


Lung slice culture

ALI culture – sponge ALI culture – Rotor / sponge Nasopharyngeal H5N1

Nicholls et al Nat Med 2007; 13: 147-9; Chan et al Virus Res 2013; 178: 133-45

Replication competence of of human and dromedary MERS-CoV in human bronchus and lung

Chan et al Lancet Resp Med 2014

Genetically and phenotypically, Saudi and Egyptian camel MERS-CoV appears able to infect the human respiratory tract

Why no zoonotic MERS in Africa?

Dromedary camels

Camel milk: taken fresh without boiling

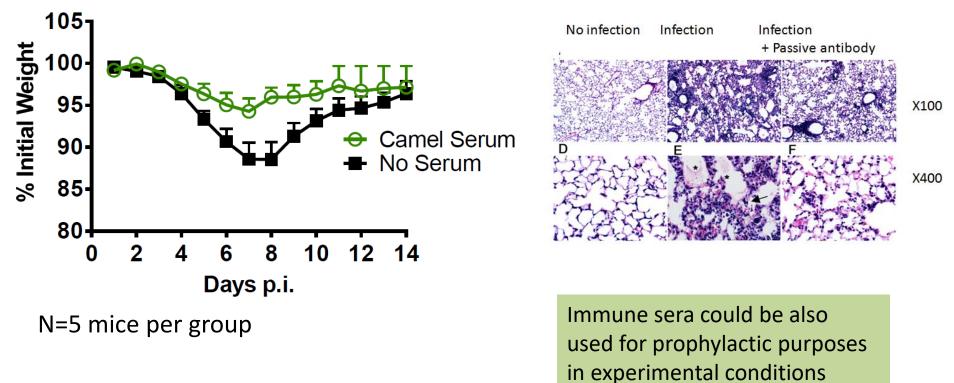
Camel slaughterhouse

Camel racing

Genetically diverse MERS-CoV are antigenically homogenous

Patient ID	Day of illness	Reciprocal PRNT₉₀ antibody titer to MERS-CoV			
		EMC (clade A)	Camel Al-Hasa KFU-HKU13 (clade B)	Camel Egypt NRCE- HKU 270 (clade non A/B)	
В	12	320	160	160	
В	39	320	320	640	
G	17	40	40	80	
G	35	160	80	160	

Collaboration with Seoul National University College of Medicine Park SW, Perera RAPM, -- Peiris M, Oh MD – Eurosurveillance – on line


Also demonstrated with naturally infected camel sera

Hemida MG, et al Emerg Infect Dis. 2014 Jul;20(7):1231-4.

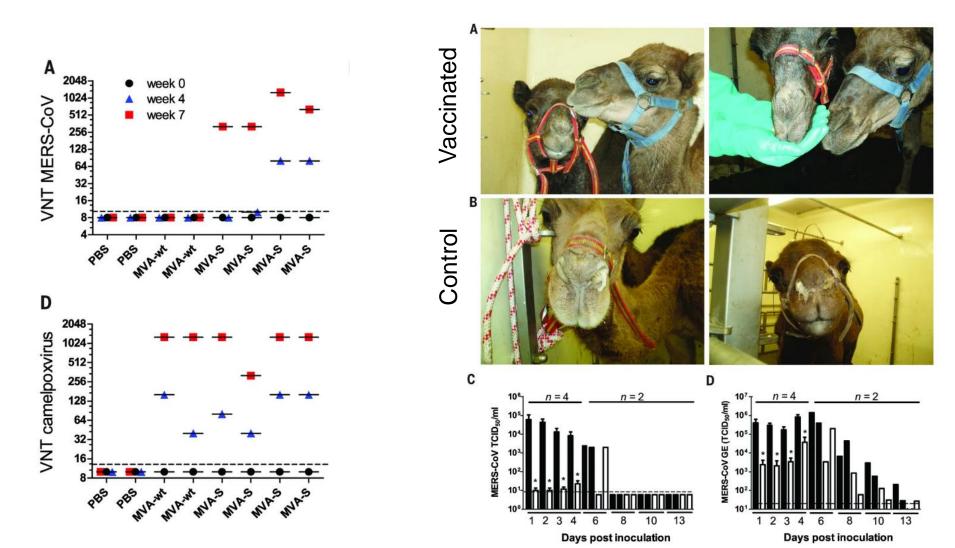
Can we treat MERS with camel immune serum? Weight loss of IFNAR-/- hDPP4 transfected mice challenged with MERS-CoV followed by passive therapy with MERS-CoV immune serum

Ad5-hDPP4 transfection of IFNAR-/- mice 5 days before challenge

- \rightarrow Challenge (i.n.) with 10⁵ MERS CoV
- \rightarrow Treat with 200ul camel serum (i.p.) neut Ab tier 1:1280 1 day later

Zhao et al. J Virol 2015

SHARE REPORT



An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels

Bart L. Haagmans^{1,*}, Judith M. A. van den Brand¹, V. Stalin Raj¹, Asisa Volz², Peter Wohlsein³, Saskia L. Smits¹, Debby Schipper¹, Theo M. Bestebroer¹, Nisreen Okba¹, Robert Fux², Albert Bensaid⁴, David Solanes Foz⁴, Thijs Kuiken¹, Wolfgang Baumgärtner³, Joaquim Segalés^{5,6}, Gerd Sutter^{2,*}, Albert D. M. E. Osterhaus^{1,7,8,*}

Hurdles:

- Cannot induce sterilizing immunity
- Protective duration?

Detection of infection MERS-CoV in adult camel with high neutralizing antibody

					T-PCR res			
Farma a ana alimanalata	Onwood we		0.00	Nasal	Oral	Fecal	0 a mudaal ±	ار بر راد میک این بر این میک
Farm, sampling date	Camel no.	Calf/Adult†	Age	sample	sample	sample	Copy/mL‡	Antibody ti
Farm A 2013 Nov 30	1	Adult	13 y	Pos	Neg	Neg	2.61×10^{7}	>5,120
20131404 30	2	Adult	12 y	103	-	Neg	2.01 × 10	>5,120
	3	Adult	12 y 10 y	_	Neg	Neg		>5,120
	4	Adult	14 y	_	-	Neg		>5,120
2013 Dec 4						-		640
2013 Dec 4	5 6	Adult	8 y 8 v	-	Neg	Neg		
	-	Adult	9 y 10 u	-	Neg	Neg		2,560
	2 70°°	Adult	10 y	-	Neg	-		>5,120
	7Calf 7Dama	Calf	1–2 y	-	Neg	Neg		1,280
	7Dam	Adult	9.5 y	_	Neg			2,560
	8	Adult	7 y	-	Neg	Neg		1,280
	9	Adult	6 y	-	Neg	Neg		1,280
	10	Adult	8 y	-	Neg	Neg		640
	11Calf	Calf	1—2 y	_	Neg	Neg		-
	11Dam	Adult	-	-	Neg	Neg		_
	12	Adult	12 y	Ā	Neg	Neg		320
2013 Dec 30	13	Calf	1 y	Pos	-	-	1.30 × 10 ⁸	<20
	14	Calf	1 y	Pus#	-	Neg	1.78 × 10 ⁸	<20
	15	Calf	1 y	Pos	-	Neg	6.07×10 ⁶	20
	16	Calf	1 y	Pos	-	Neg	3.78×10^{7}	>5,120
	17	Calf	40 d	Pos	_	Neg	4.86 × 10 ⁴	80
	18	Calf	40 d	Neg	Neg	_		_
	19Calf	Calf	1 y	Pos	-	Neg	2.41×10^{7}	_
	19Dam	Adult	_	Neg	_	Post	9.27×10^{7}	_
	20	Adult	8 y	Neg	_	Neg	3.27 ~ 10	> 5,120
	20	Adult	7 y	Pos	_	Neg	3.31 × 10 ³	320
	22	Calf	2 wk	Pos	-	Neg	3.31×10^{3}	1,280
2014 Feb 14	26	Calf	2 mo	Neg		Neg	3.30×10	>5,120
2014 160 14	13	Calf	31110 1 y	Neg	_	Neg		640
	27	Calf	10 mo	Neg	-	Neg		40
	15	Calf	1 y	-	-	-		40 160
	15	Call	3 mo	Neg	-	Neg		1,280
				Neg	-	Neg		1,200
	11Dam 19Colf	Adult	12 y	Neg	-	Neg		1,280
	19Calf	Calf	1 y 2 mo	Neg	-	Neg		320
	28Calf	Calf	3 mo	Neg	-	Neg		20
	28Dam	Adult	<u>10 y</u>	Neg		Neg		1,280
Farm B, 2014 Feb 11	23Calf	Calf	2.5 mo	Neg	-	Neg		_
	23Dam	Adult	7 y	Neg	-	Neg		>5120
	24Calf	Calf	2 mo	Neg	-	Neg		_
	24Dam	Adult	6 y	Neg	-	Neg		1,280
	25Calf	Calf	2 mo	Neg	-	Neg		-
	25Dam	Adult	6 y	Neg	-	Neg		640

Technical Appendix Table. Testing of dromedary camels by RT-PCR and serologic testing for MERS-CoV, AI-Hasa, Saudi

- NT antibodies might not confer a complete protection against MERS-CoV?
- Possibility of re-infections?

A lot of unknown about MERS-CoV in camels.

or age information not available. †Calf defined as dromedary cam el ≺2 y of age; adult defined as dromedary cam el ≥2 y of age.

‡Data deduced from the upstream of E assay.

§P seudotype neutralization antibody titers.

¶Full genome sequenced. #Virus isolated.

Arahia*

Hemida et al., EID 2014

Summary

- Camels are a source of human infection but transmission (leading to disease or seroconversion) is inefficient and routes / modes of transmission to humans are poorly understood.
 - Asymptomatic humans as a source of transmission?
 - Unusual route of exposure?
 - Host heterogeneity ?
- MERS-CoV is genetically diverse but antigenically homogenous
- There are well validated methods for MERS detection
 - MERS-spike pseudoparticle neutralization test is a reliable and specific method for sero-epidemiology / confirmation that does not require BSL-3 containment.
- Promising experimental vaccines have been developed, but their potential use in the field are need to be evaluated

MERS: What we do **NOT** know

- Old disease or new:
 - Virus was circulating in dromedary camels for >30 years. Why no disease till 2012?
- Why not in Africa?
 - Virus is endemic in dromedary camels in Africa. Why no human cases reported?
- Why is zoonotic MERS apparently so rare / stochastic but efficient transmission within health care facilities?
 - Virus is common in dromedary camels, e.g. in calves and in abattoirs.
 - Why are the highly exposed groups not prominent in patients with MERS?
 - Parallels with avian flu H5N1
- Can it / what will lead to, increased transmission within the community? → SARS experience!!
- Route of transmission from camels to humans?
- Other animal hosts (reservoir, intermediate host)?

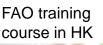
Technology transfer and collaborations

WHO site visit: South Korea

WHO/FAO site visit: Kingdom of Saudi Arabia

FAO site visit: United Arab Emirates

WHO/FAO/Other trainings: Kingdom of Saudi Arabia United Arab Emirates Overseas visitors Collaborators from : Australia Egypt KSA France Mongolia South Korea UAE Others


Veterinary lab

Whole sale market

Slaughterhouse

Hospital

Household visit

Camel farm

Racing court

The University of Hong Kong: School of Public Health: Malik Peiris, Daniel Chu, Mahen Perera, M Chan, Chris Mok, Renee Chan, Eric Lau, Y Guan, John Nicholls, P Wang National Research Centre, Giza, Egypt: G Kayali, MA Ali King Faisal University, KSA: MG Hemida, A Al Naeem King Fahad Medical City. KSA: S Fagbo, A Hakawi Seoul National University College of Medicine, Myoung-don Oh, SW Park, WB Park, PG Choe, SJ Choi, JY Chun, HS Oh, KH Song et al Guangzhou Medical University, 1st Affiliated Hospital: NS Zhong, Ling Chen et al. **CIRAD:** Eve Miguel. V Chevalier, F Roger; Institut Pasteur: Maria van Kerkhove Abu Dhabi Food Control Authority: Z Al Hammadi, YM Yassir, SS Al Muhairi University of Iowa: S Perlman, J Zhao Transboundary State Central Veterinary Laboratory, Mongolia: B Damdinjav, B Khisgee **University of Queensland**: Rafat Al Jassim

R Fouchier, B Haagmans, M Koopmans (Erasmus MC), C Drosten, M Muller (U Bonn),

Aron Hall (US CDC); Bernard Faye

