Workshop for OIE National Focal Points for Animal Production Food Safety Hammamet, Tunisia (4-6 April 2011)

Challenges in prevention and control of food-borne zoonotic parasites in Africa

Sam Mukaratirwa

School of Biological and Conservation Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa

Outline

Introduction

- Endemic food-borne zoonotic parasites in Africa
- Impact of food-borne zoonotic parasites in Africa
- Current control and prevention strategies of food-borne zoonotic parasites in Africa
- Challenges in Control and Prevention

Introduction

Food-borne zoonotic parasites-considerable attention in the last decade or two

- *i.* Cases have gone up in humans world-wide including Africa
- *ii.* Better diagnostic tools are now available-high prevalences
- iii. Improved communication-record keeping
- iv. HIV-AIDS pandemic in Sub-Saharan Africa
- v. Urban farming
- vi. Globalization of food supply

vii. Changes in lifestyle

Endemic food-borne zoonotic parasites in Africa

Parasite species	Source of human infection
1. *Taenia solium	 i. Ingestion of cysts in raw or undercooked meat (pork) ii. Ingestion of eggs from contaminated food and uncooked vegetables and fruits iii. Autoinfection
2. Taenia saginata	i. Ingestion of cysts in raw/undercooked meat (beef)
<i>3. *Echinococcus granulosus</i>	i. Ingestion of eggs from contaminated food, fruits and uncooked vegetables
4. *Trichinella species	i. Ingestion of larvae in raw/undercooked meat (variety of meat)
5. Fasciola gigantica/hepatica	i. Ingestion of metacercariae in edible plants or from contaminated drinking water
6. Toxoplasma gondii	 i. Ingestion of sporulated oocysts from contaminated fruits and uncooked vegetables fruits ii. Ingestion of cysts in meat (variety of meat)

*Disease caused by parasite is classified under "Neglected tropical diseases"

Food-borne zoonotic parasites fulfill the criteria for "neglected tropical diseases"

- Constitutes some of the oldest diseases known to man
- Common in rural agricultural communities
- Of late in urban areas where people keep livestock and live in close contact with their animals
- Public health importance is often ignored
- True incidence is difficult to evaluate
- Severity of their health and socio-economic impact is often unclear
- Limited information in most countries on the spread of these diseases
- Poor people are more vulnerable to infection

Why we only see tip of the iceberg of foodborne zoonotic parasites in Africa

- Global Burden of Disease is assessed using DALYs (disability adjusted life-years)
- This can be calculated only when the epidemiological information of the disease is known
- In most developing countries the incidences of these neglected parasitic diseases are completely unknown
- Underestimation leads to neglect due to lack of evidence for government and donor decision makers on the importance of these diseases

Impact of food-borne zoonotic parasites in Africa

Parasite species	Economic and Social impact
1. Taenia solium	 i. Quality of pork affected ii. Reduced farmers' income iii. Burden of disease in humans is hampered by lack of data iv. Cost of disease in humans estimated USD18- 34 million in Eastern Cape Prov. S/Africa and USD13 million in southern Cameroon v. Taeniosis in humans
2. Taenia saginata	 i. Quality of beef is affected ii. Reduced farmers' income iii. Taeniosis in humans
3. Echinococcus granulosus	 i. Quality of meat is affected ii. Reduced farmers' income iii. Hydatidosis in humans
4. Trichinella species	i. Hamper pork and game meat exportii. Most human cases go unnoticed
5. Fasciola gigantica/hepatica	 i. Hampers animal production ii. Liver condemnations iii. Human cases underestimated in Africa
6. Toxoplasma gondii	 Abortions mainly in sheep Congenital infection and abortions in humans Detrimental effects in immuno-compromised individuals

Major neglected zoonoses and WHO Regions

AMR Echinococcosis Cysticercosis Leptospirosis Rabies Brucellosis B.Tuberculosis

0000

EUR EMR Brucellosis **Echinococcosis** Multilocular Brucellosis SEAR/WPR Echinococcosi Rabies ZCLeishmania Rabies Rabies **Echinococcosis** AFR **Trematodoses** Rabies Cysticercosis **Echinococcosis** Leptospirosis Cysticercosis, Brucellosis **B.**Tuberculosis Z. Trypanosomiasis

0

000

Human fascioliasis-what is known in Africa?

Traditionally high consumption of raw vegetables contaminated with metacercariae

Taenia solium taeniosis/cysticercosis in eastern and southern Africa

Pig tapeworm has two hosts: Man-Taeniosis and cysticercosis

Pigs-Cysticercosis

Regional projections of total demand and consumption of pork (million tonnes)

Developed Region

Developing Region

81

PORK

Global distribution of *Taenia solium* cysticercosis/taeniosis

Taenia solium: Effects on pig production

Cysts greatly reduce market value

Condemnation of pork
 Loss of animal protein
 Loss of income (producer)

Taenia solium: Effects on humans

Cysts in brain (Neurocysticercosis)

- a. Epilepsy
- b. Headache
- c. Death

Economic effects:

- a. Loss in man hours
- b. Reduced labour force
- c. Hospitalization cost

Social effects

a. Epileptics-stigmatised

Possible intervention strategies for control of cysticercosis

Results of prevalence studies on porcine cysticercosis conducted in ESA

Country	Porcine Cysticercosis Prevalence (%)	No. pigs surveyed	Type of survey	Area Surveyed	Reference
Tanzania	0.04 - 4.9	45,794	Р	Mbulu District	Nsengwa, 1995 ^b
	4.5 – 37.7	83	Р	Northern highlands	Boa <i>et al.</i> , 1995
	3.2 - 46.7	770	L	Mbulu District	Ngowi, 1999
	0 - 26.9	1,789	L	Southern highlands	Boa, 2002
Kenya	10.0 - 14.0	407	L	Busia & South Nyanza Districts	Githigia et al., 2002
Uganda	33.7 – 44.5	600	Р	Moyo District	Anyanzo, 1999
	0 - 33.7°	297	Р	Central & Northern Districts	Kisakye and Masaba, 2002

^aP = post-mortem, L = lingual examination, S = serological;

^bSurvey conducted from 1985 – 1989

^cEight foetuses from a positive slaughtered pregnant sow were all found to be infected with cys

Results of prevalence studies on porcine cysticercosis conducted in ESA

Country	Porcine Cysticercosis Prevalence (%)	No. pigs surveyed	Type of survey	Area Surveyed	Reference
Zambia	20.6 - 56.6	1,316	S,P	Lusaka	Phiri et al., 2001
	8.2 - 20.8	249	L,S	Eastern & Southern Provinces	Phiri <i>et al</i> . 2002
Zimbabwe	0.03 - 4.3	1,000,000	Р	National	Robinson, 1978
	2.7 - 28.6	99,525	Р	Western Region	Matenga <i>et al.</i> , 2002
Mozambique	6.5 - 33.3	387	S	Tete Province	Afonso <i>et al.</i> , 2001
South Africa	0.5 – 25.1	> 100,000	Р	National	Viljoen, 1937
	0 – 9.1	28,242	Р	National	Heinz and MacNab, 1965

^aP = post-mortem, L = lingual examination, S = serological

Main risk factors identified

- Endemic in pig raising/pork consuming areas
- Associated with poverty
 - inadequate sanitation
 - Iack of proper slaughtering facilities, meat inspection & control
 - poor pig husbandry practices
- Spread by people/pig movement
 - immigration
 - overseas domestic workers
 - international travel
 - marketing and transport of pigs

The pig population in Africa increased 284% during the 20 year period 1980–1999 - far more than any other livestock species during that time and the trend continues.

Clandestine livestock market in downtown Lusaka – more than 20% of pigs are infected with *Taenia solium!*

ESA in general:

- Lack of official slaughtering facilities for pigs
- Lack of official pork inspection and control
- Inadequate pork inspection guidelines

Control and Surveillance of food-borne zoonotic parasites

Parasite species	Control and prevention options at farm and abattoir level
1. Taenia solium	i. Improvement in pig production systemsii. Meat inspection at abattoir leveliii. Post-slaughter processing to inactivate larvae
2. Taenia saginata	i. Improvement in pig production systemsii. Meat inspection at abattoir leveliii. Post-slaughter processing to inactivate larvae
3. Echinococcus granulosus	i. Meat inspection at abattoir levelii. Control of stray dogs and deworming of dogs
4. Trichinella species	i. Improvement in pig production systemsii. Meat inspection at abattoir leveliii. Post-slaughter processing to inactivate larvae
5. Fasciola gigantica/hepatica	i. Anthelmintic treatment of ruminantsii. Meat inspection at abattoir level
6. Toxoplasma gondii	NP

Challenges in Control and Prevention

- Collapse in veterinary infrastructure and services of most African countries
- Lack of regulations or enforcement of regulations to prevent and control some of these parasites
- Lack of reliable epidemiological data on infection in humans and animals
- The diseases do not lead to large-scale international outbreaks and hence countries are not compelled to international notification
- Lack of awareness of the diseases and no coordinated approach by health/veterinary professionals

Challenges in Control and Prevention (ctd)

- Lack of research on the epidemiology of the diseases
 - Results in lack of accurate data on the incidence, sources and transmission routes
 - Do not fulfill a risk-based approach as proposed by Codex Alimentarius to implement risk based control programme
- Poverty (Lack of adequate sanitation in resource-poor communities, illiteracy and malnutrition)
- Under-diagnosis of diseases due to unavailable or inadequate laboratory equipment, methods and qualified staff
- Livestock rearing methods (mainly extensive, exposing animals to the parasite)

Cysticercosis Working Group in East and Southern Africa

- Tanzania
- Kenya
- Uganda
- Burundi
- Rwanda
- DR Congo
- Malawi

- Madagascar
- Mozambique
- South Africa
- Zimbabwe
- Zambia
- Angola

Workshop for OIE National Focal Points for Animal Production Food Safety Hammamet, Tunisia (4-6 April 2011) TOOLS FOR DETECTION AND SURVEILLANCE OF SELECTED FOO-BORNE ZOONOTICS PARASITES

Background

- Effective detection/diagnostic tools for zoonotic parasites are essential for ensuring food safety
- The diagnostic methods should be reliable (sensitive, specific and inexpensive)
- Traditional parasitological tools (accessible to most labs in developing countries, inexpensive, sensitivity +/-, specificity +, tedious as surveillance tools)
- Molecular tools (not readily accessible to most labs in developing countries, expensive to run, sensitivity ++, specificity ++, easy to run and require little material)
- Serological tools (commercial kits available for some parasites, sensitivity +, specificity +/-, easy to run and very useful as surveillance tool)

Trichinellosis

- All *Trichinella* species are presumed infective to man and a large variety of mammals
- Average incidence of the disease in humans worldwide is about 10,000 cases /year
- Mortality rate of about 0.2% (mostly in Europe and what about Africa?)
- Infection is underreported in many African countries due to lack of appropriate detection tests and knowledge of the disease on the part of physicians (Pozio, 2007).
- Direct life cycle (no exogenous stage)
- Broad host spectrum
- > All species morphologically indistinguishable
- > Two clades
- i. Encapsulated species
- ii. Non capsulated species

Encapsulated (red) and non-encapsulated (green) species and genotypes of *Trichinella* based on the variation in mitochondrial LSU and COI DNA (on the left) and SSU rDNA (on the right) (Zarlenga et al. 2006).

Geographical distribution of Trichinella genotypes

Sylvatic cycle in Africa (*Trichinella zimbawensis*)

Nile crocodile ++

Domestic cycle of *Trichinella spiralis*

Varan (monitor lizard) ++

Warthog??

Bush pig??

Fig. 176. Trichinella spiralis. Twenty days for larvae to be infective. Larvae to adult in 4 days.

Domestic pig ++

Monkeys ++

Table 1. Clinical manifestations of baboons and monkeys infected with *Trichinella zimbabwensis*

Animal code							
	SFB	SMB	BFB	BFM	SFM	SMM	BMM
Infective dose/kg	16 600	16 400	7 300	25 000	24 500	24 500	17 600
Clinical signs and symptoms	Day of the first manifestation pi						
Fever	9	11	16	14	13	18	10
Diarrhea	16	16	16	16	19	21	21
Depression	12	12	12	12	12	12	12
Periorbital edema	30	30	30	30	30	30	30
Muscular pain	30	30	30	30	30	30	30
Alopecia	26	26	26	26	26	26	26
Blindness	38	no	no	no	no	no	no
Death	49 dpi	50 dpi	no	30 dpi	no	36 dpi	no

Post-slaughter detection of Trichinella

Samples for Diagnosis of Trichinella

- a. The detection of *Trichinella* larvae is mainly targeted to post-mortem inspection of pigs and wild animals which are consumed by humans.
- b. Detection usually achieved through routine meat inspection
- c. Sensitivity of existing methods is dependent on the muscle selected for sampling, sample size and quality assurance measures employed
- d. Predilection sites for *Trichinella*-Pigs (diaphragm pillars, tongue and masseter muscles
 -Wild boars (forearm muscle, diaphragm pillars
 -Crocodiles (tail and extremeties)
 -unknown for the species (tongue)

Techniques	Too	ols	Adv	vantages/Disadvantages
1. Observation of muscle larva	i.	Trichinoscopy and microscope	i. ii. iii. iv.	Ideal for field situations Laborius and time consuming for individual carcasses Low sensitivtiy Not recommended for use in food and game animals intended for human consumption
2. Artificial digestion of muscle i.Magnetic Stirrer method (Gold standard) ii.Stomacher method -Pooled samples -Individual samples	i.	Laboratory equipment and chemicals	i. ii. iii.	Need for retesting individual samples if the pooled sample is positive Need for laboratory and equipment Ideal for large samples
3. Serological techniques i.ELISA ii.Western Blot	i.	ELISA reader, plates and chemical reagents	i. ii. iii. iv.	Unsuitable for the purposes of meat inspection Useful for surveillance and epidemiological studies in animal populations False negatives during early stages of infection Techniques not tested in wild animals

Geographical distribution of T. zimbabwensis

- Zimbabwe (commercialy reared crocodiles, wild crocodiles, varans)
- South Africa (commercialy reared crocodiles, wild crocodiles, lions)
- Mozambique (wild crocodiles)
- Ethiopia (wild crocodiles)

Serological detection of trichinellosis (Gajahdah et al., 2009)

Method	Antigen	Sensitivity	Specificity
ELISA	Crude	99% (pigs, humans)	60% (humans)
ELISA	Excretory/Secretory	98% (pigs, horses) 99% (humans)	98% (pigs)
ELISA	Beta tyvelose	<98% (pigs) <98% (horses)	>99% (pigs)
Western Blot	Crude antigen	98% (humans)	98% (humans)
Western Blot	ES antigen	Not available	98% (horses)

Porcine cysticercosis

- Detection of porcine cysticercosis cases is vital for preventing human infections as well as for monitoring interventions programmes
- Detection methods are available for live animals as well as inspection of carcass at slaughter

Techniques	Tools		Advantages /Disadvantages			
1. Lingual examination	i. Visual in for cysts of tongu	spection and palpation on the ventral surface e	i. ii. iii. iv. v.	Inexpensive and quick method for farmers and pig traders Specificity is very high Useful for rapid assessment of sites and determination of "hot spots" Sensitivity depends on the intensity of infection May underestimate prevalence of infection		
2. Pig carcass inspection	i. Slaughter and offic guideline	r houses, equipment ial meat inspection s	i. ii. iii.	Sensitivity is low in pigs with low intensity of infection Underestimates the true prevalence Useful for validating other diagnostic methods if conducted properly		
3. Serological techniques i.Antigen-ELISA ii.Western Blot	i. ELISA r chemical	eader, plates and reagents	i. ii.	Useful for surveillance and epidemiological studies in animal populations Cross-infection with <i>Taenia hydatigena</i>		

Larval Taenia solium cysts on pig's tongue

Toxoplasmosis in livestock

- Very few countries implement active surveillance programmes for toxoplasmosis
- Main challenge is the epidemiological versatility and complexity of *T. gondii*
- Practice of extensive farming of livestock adds a challenge for the detection of the parasite
- Unavailability of resources and technology in Africa limits the relevance of a single global control strategy

Life cycle of Toxoplasma gondii

http://www.metapathogen.com/IMG/Tgo-lc.png

Methods for detection of T. gondii

Many methods are available but the reliability is unclear

- a. Serological tests
- b. Parasite isolation and identification
- c. Polymerase chain reaction (PCR)

Use of properly validated assays in laboratories operating as part of a recognised quality assurance system is essential Workshop for OIE National Focal Points for Animal Production Food Safety Hammamet, Tunisia (4-6 April 2011) Wildlife products in Africa: what are the zoonotic parasites to look for?

Introduction

Factors to consider

- Role of wildlife as potential source of zoonotic paraites to human and domestic animals
- Growth rate of the global human population (demand for food)
- Expanding appetite for resources of all types
- Dissolution of many ecological barriers important in the natural control of parasitic zoonoses
- Human intrusions into many wildlife habitats and the reverse
- Shift in the interface between wildlife and people from often sporadic and fragile environments to more permanent and substantial opportunities for parasite transmission
- Change of life-style and eating habits

Wildlife Products likely to be source of infection

- Bush meat-(illegal and unsustainable trade in wildlife for meat and income)
- Wild meat- (legal and sustainable trade in wildlife for meat and income)
- Game meat-(legal and sustainable trade of farmed or ranched wildlife for meat and income

Cultural traditions for food preparation that do not affect parasite viability lead to transmission of parasites

Some statistics of bushmeat trade African countries

- More than 30 million poor rural and urban people in sub-saharan Africa are dependent on bushmeat as food, role in rituals or for trade
- In Central Africa, over 1 million metric tons of bushmeat is eaten each year — the equivalent of almost 4 million cattle
- Illegal trade in game meat runs into millions of USD every year

Reptiles and other wildlife are often captured for food or trade

Achatina spp

Some zoonotic parasites of wildlife origin acquired by parasite flow through consumption of infected meat/tissue

Parasite	Wildlife host	Route(s) of human infection
1. <i>Trichinella</i> spp.	Carnivorous and omnivorous mammals, birds and reptiles	Infective larvae in meat which is raw or undercooked
2. Toxoplasma gondii	Mammals and birds	Bradyzoites or tachyzoites in intermediate hosts
3. Angiostrongylus cantonensis	Rodents	Infective larvae in gastropod intermediate hosts, snails, slugs, fish, crab or crayfish paratenic hosts, or on vegetables

Are these the only zoonotic parasites from wildlife?

Zoonotic parasites web comprising multiple possible routes of parasite flow (Polley, 2005)

Crocodile Farming in sub-saharan Africa

Croc tails meat ready for marketing

Trichinella zimbabwensis-infected crocodile farms in Zimbabwe

Fig. 1. Map of Zimbabwe showing the crocodile (*Crocodylus niloticus*) farms and their relative position (black area) in Africa. (\triangle), Farms with no history of *Trichinella*-positive crocodiles; (\blacktriangle), farms which had *Trichinella*-positive crocodiles in 1995 but not in 2002; \blacksquare , farms with *Trichinella*-positive crocodiles in 2002; \bigcirc , towns and cities.

The rat lung-worm Angiostrongylus cantonensis first report in South Africa (Archer et al 2011)

Challenges in detecting zoonotic parasites in wildlife products

- Difficulties in accessing wildlife products for inspection (informal channels)
- Lack of information regarding the host and geographic distributions of the hosts and the zoonotic parasites.
- Lack of validation of some of the diagnostic tests used for these infections in wildlife, particularly those based on serology.
- Lack of national or regional monitoring/surveillance for wildlife zoonotic parasites in Africa

Thank you for your attention