Biosecurity in Aquaculture

Workshop on enhancing aquatic animal health and biosecurity

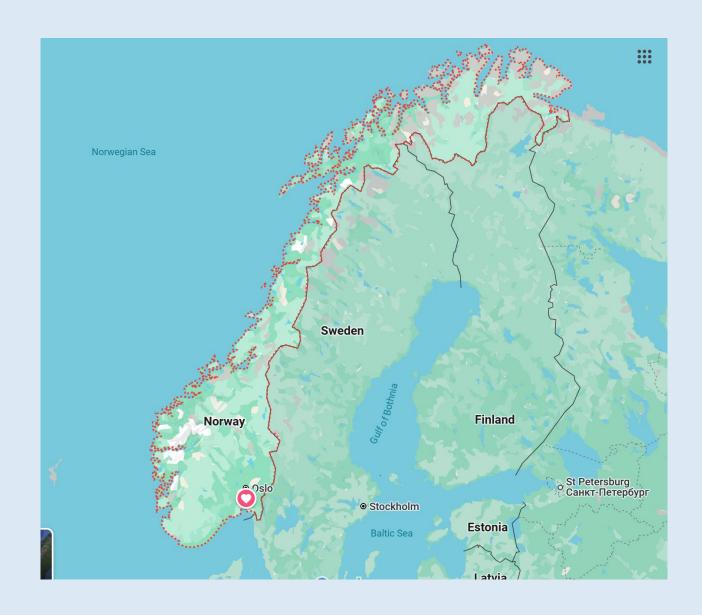
26-29 October 2025, Jeddah, Saudi Arabia

Torfinn Moldal Norwegian Veterinary Institute Norway

Norwegian Veterinary Institute

World Organisation for Animal Health

Organisation mondiale de la santé animale


Organización Mundial de Sanidad Animal

THE NORWEGIAN VETERINARY INSTITUTE (NVI)

NVI is the WOAH Reference Laboratory for:

- Infection with infectious salmon anaemia virus
- Infection with Gyrodactylus salaris
- Infection with salmonid alphavirus
- Chronic Wasting Disease

and the WOAH Collaborative Center for

- Epidemiology and Risk Assessment of Aquatic Animal Diseases
- The Economics of Animal Health

DEFINITIONS OF BIOSECURITY CATEGORIES OF PRODUCTION SYSTEMS EPIDEMIOLOGICAL UNIT IN AQUACULTURE SYSTEMS COMPARTMENTALIZATION TRANSMISSION PATHWAYS SURVEILLANCE, MONITORING AND VACCINATION **EQUIPMENT, DISINFECTION AND MANAGEMENT BIOSECURITY PLAN** SOME EXAMPLES FROM NORWAY **SUMMARY**

Source: COLOURBOX

BIOSECURITY IN AQUACULTURE (FAO)

"Cost-effective management of risks posed by pathogens to aquaculture through a strategic approach at the enterprise, localsector, national and international levels with shared public-private responsibilities."

FAO FISHERIES AND AQUACULTURE TECHNICAL PAPER

689

The Progressive Management Pathway for Aquaculture Biosecurity

Guidelines for application

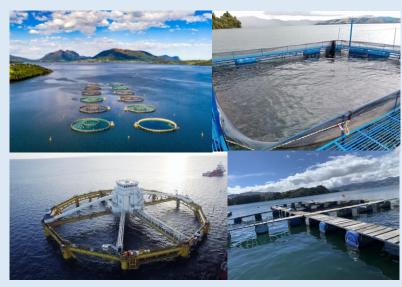
BIOSECURITY IN AQUACULTURE (WOAH)

"A set of management and physical measures designed to reduce the risk of introduction, establishment and spread of diseases, infections, or infestations to, from and within an aquatic animal population."

- Biosecurity for Aquaculture Establishments Section. 4/ Chapter 4.1
 - ☐ General principles *Chapter 4.1 / Article 4.1.4*
 - ☐ Transmission pathways and mitigation measures *Chapter 4.1 /Article 4.1.7*
 - ☐ Biosecurity plan development Chapter 4.1 /Article 4.1.9
 - ☐ Risk analysis Chapter 4.1 /Article 4.1.8
- Disinfection Section. 4/ Chapter 4.4
- Contingency plan Section. 4/ Chapter 4.6
- Handling, disposal and treatment of aquatic animal waste Section. 4/ Chapter 4.8
 - Biosecurity and surveillance system requirements Section. 1/Chapter 1.4/Article 1.4.5

CATEGORIES OF PRODUCTION SYSTEMS

Closed system


- There is sufficient control over water entering and exiting the system to exclude <u>aquatic</u> <u>animals</u>, <u>vectors</u> and <u>pathogenic agents</u>.
- Environmental conditions can also be controlled.
- Examples of closed <u>aquaculture</u> systems include recirculating <u>aquaculture</u> production systems, production systems with a safe water supply free from <u>pathogenic agents</u> or <u>aquatic animals</u> (e.g. ground water), or those with high levels of treatment (and redundancy) of water entering and exiting the system.

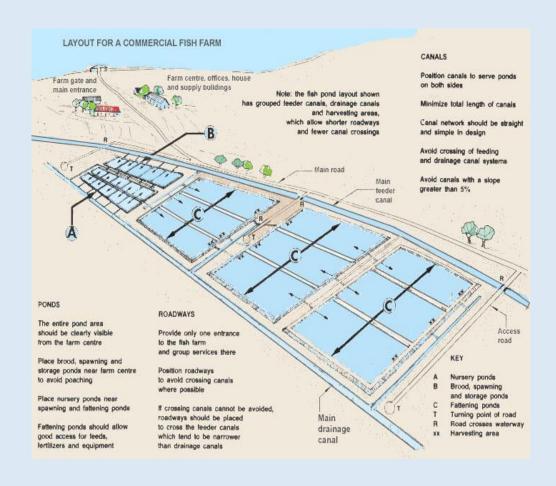
Semi-closed system

- There is some control over the water entering and exiting the system and over the environmental conditions.
- <u>Aquatic animals</u> and <u>vectors</u> can be prevented from entering and exiting the system; however, there is limited control to prevent the entry or exit of <u>pathogenic agents</u>.
- Examples of semiclosed <u>aquaculture</u> production systems are ponds, raceways, floating enclosures, and flow through tanks.

Semi-open system

- It is not possible to have control over the water entering or exiting the system, or over the environmental conditions.
- Some <u>aquatic animals</u> and <u>vectors</u> may also enter and exit the system.
- Examples of semi-open <u>aquaculture</u> production systems are net pens or cages for finfish and suspended baskets or rope systems for molluscs in natural water bodies.

EPIDEMIOLOGICAL UNIT IN AQUACULTURE SYSTEMS



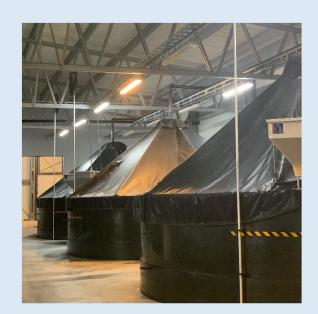
WOAH Aquatic Code, Glossary

A group of animals that share approximately the same <u>risk</u> of exposure to a <u>pathogenic agent</u> with a defined location (e.g. fish in a pond, caged fish in a lake)

or

Animals sharing the same management practices make it likely that a <u>pathogenic agent</u> in one group of animals would quickly spread to other animals (e.g. all the ponds on a farm, all the ponds in a village system).

CLOSED SYSTEM: Broodstock Facility with High Biosecurity


Biosecurity control measures:

- Seawater sourced from ≥30m depth, then recirculated
- Water treatment using UV, ozone, and biofiltration
- Strict disinfection protocols and one-way fish movement
- Continuous water quality monitoring and pathogen detection systems

Facility layout and structure:

- Complete separation of freshwater and seawater systems
- Physical separation of buildings, personnel, and equipment

Discussion Point:

•Should this facility be considered a single epidemiological unit or multiple units?

SEMI-CLOSED SYSTEM: Tilapia and Catfish Farm

Includes a **hatchery**, **pre-growing area**, and **earthen ponds**

Varying levels of biosecurity across components

Discussion Point

Can each pond be considered a **separate epidemiological unit**?

- Possible if:
 - No direct water exchange
 - No shared equipment or personnel
- Otherwise, may be grouped as one or more units

SEMI-OPEN SYSTEM: Sea Cages

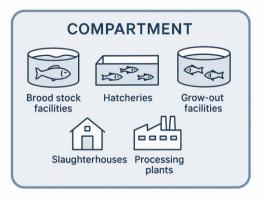
Each cage can hold hundreds of thousands of fish Cages spaced 20–50 meters apart within a farm Farm sites separated by 2–5 kilometers
Connectivity varies based on:

- Water flow
- Shared personnel/equipment
- Local biosecurity practices

Key Question: What defines the epidemiological unit?

- A single cage, given the physical boundaries and individual management?
- A group of cages within one farm, due to shared personnel and equipment?
- The entire farm? Or multiple farms within a production cluster, especially if they share water currents or service vessels?

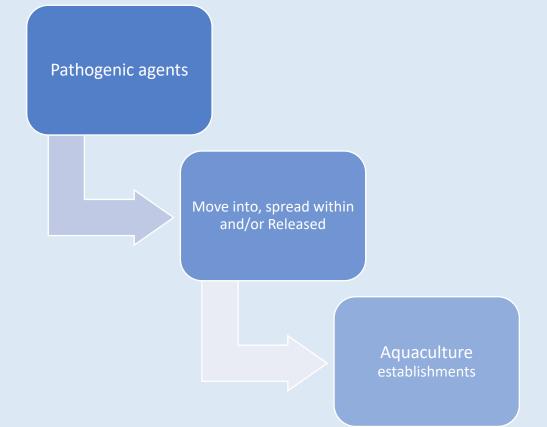
Aquatic Code: Section. 4/Chapter 4.3


Compartmentalisation provides an opportunity to <u>trade disease-free aquatic animal</u> <u>commodities</u> from zones or countries that are not declared free from the diseases of concern

Compartment means <u>one or more aquaculture establishments</u> under <u>a common</u> <u>biosecurity management system</u> containing an aquatic animal population with a distinct health status with respect to a specific disease or diseases for which <u>required</u> <u>surveillance and control measures</u> are applied and <u>basic biosecurity conditions</u> are met for the purpose of international trade.

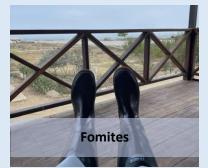
Stepwise Approach:

- 1. Develop and apply a Basic Biosecurity Plan
- 2. Demonstrate effectiveness over time
- 3. Conduct targeted surveillance
- 4. Declare disease freedom

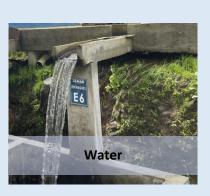

PRINCIPLES FOR DEFINING COMPARTMENTALIZATION

Aquatic Code: Section. 4/Chapter 4.3/Article 4.3.2

- A compartment may be established for a specific disease or diseases
- Must be **clearly defined**, including:
 - **Location** of all components (e.g. broodstock facilities, hatcheries, growout, slaughterhouses, processing plants)
 - Description of **interrelationships** among components
- Must demonstrate epidemiological separation from other populations with different health status
- Definition should consider:
 - Disease-specific epidemiological factors
 - Aquatic animal species involved
 - Production systems and infrastructure
 - Biosecurity practices
 - Surveillance







Personnel and visitors

INTRODUCTION OF AQUATIC ANIMALS

disinfect the clothes after leave the quarantine area

SOURCE OF WATER AND ITS QUALITY

PERSONNEL AND VISITORS

SURVEILLANCE, MONITORING AND VACCINATION

Inspection of abnormal behavior, feeding, and clinical signs

Perform necropsies and diagnostic tests for disease monitoring at a defined frequency.

Vaccination against diseases of concern

Promptly remove of dead animals

Final disposal of dead animals

Report unusual mortality or detected diseases to the Competent Authority

Have a defined process for handling the aquatic animals

Use equipment designed and operated to minimize physical injuries to aquatic animals

Define a process for loading and unloading animals to minimize stress and prevent injuries

EQUIPMENT, DISINFECTION AND MANAGEMENT

Do not share equipment and materials between batches whitin the facility

Use dedicated equipment for handling dead and moribund animals

Cleaning and disinfection of facilities and equipment between batches

Perform fallowing before introducing new animals

Conduct soil treatment in all earth ponds

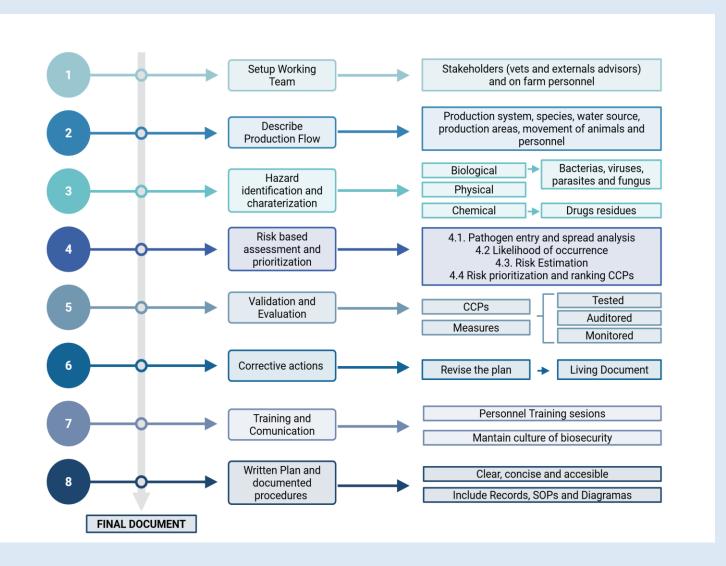
Do not apply untreated animal feces as pond fertilizer

EQUIPMENT, DISINFECTION AND MANAGEMENT

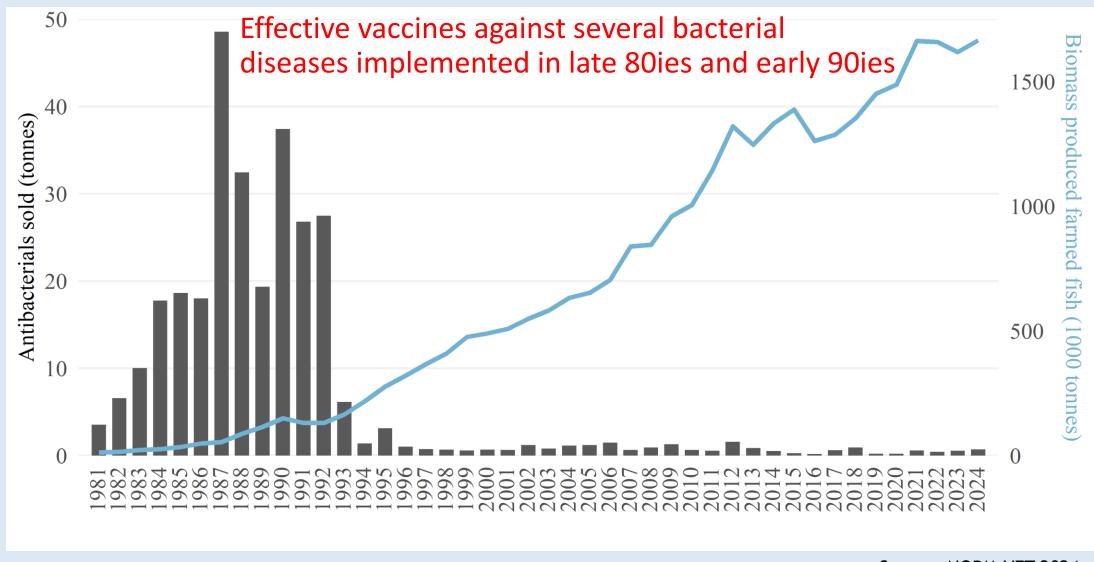
Routinely clean and disinfect handling equipment

Proper and safe use of treatments

 Pesticides, herbicides, fertilizers, probiotics and prebiotics. Regularly remove debris and waste from the facility


Handwashing after contact with sick or dead aquatic animals Ensure all personnel are properly trained in biosecurity protocols.

APPROACH FOR DEVELOPING BIOSECURITY PLAN



ANTIBACTERIALS SOLD AND BIOMASS IN NORWAY

Source: NORM-VET 2024

NUMBER OF VACCINE DOSES SOLD IN NORWAY

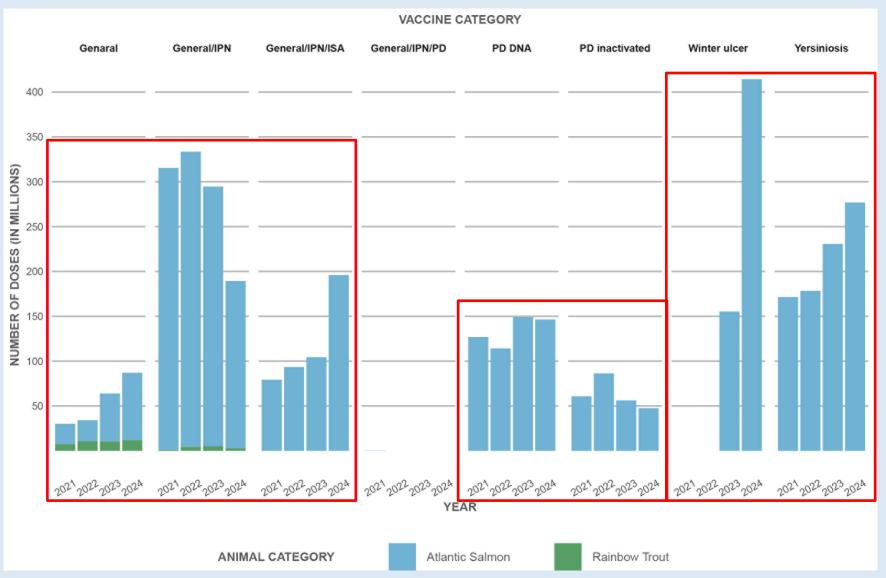


Figure: Leif Lukas Löfling

NUMBER OF CONFIRMED ISA OUTBREAKS PER YEAR

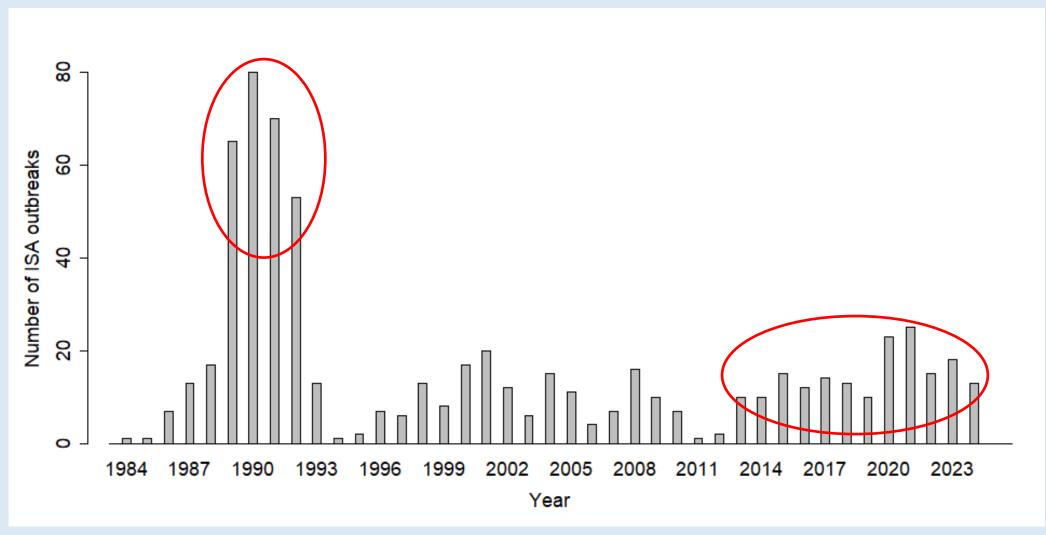


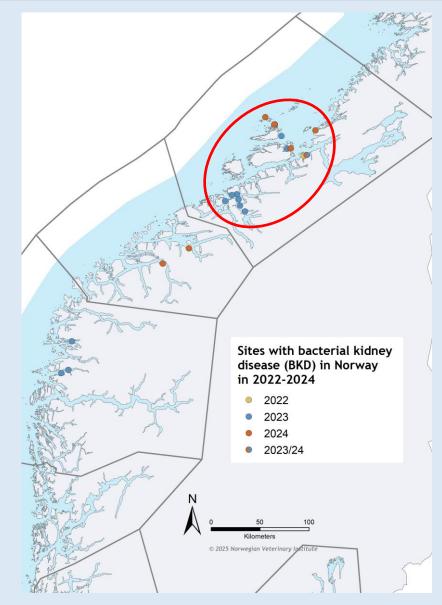
Figure: Hege Løkslett

WELL BOATS AND DELOUSING WESSELS

Source: https://www.rostein.no

Well boats are used for transport from hatcheries to sea sites, for delousing and sorting at the sea sites and transport from sea sites to slaughter house


Well boats and delousing wessels may pose a risk for spread of several pathogens



EXAMPLE: SPREAD OF RENIBACTERIUM SALMONIARUM

Map: Attila Tarpai

Biosecurity can be defined as a set of management and physical measures designed to reduce the risk of introduction, establishment and spread of diseases, infections, or infestations to, from and within an aquatic animal population.

Pathogens can be introduced and spread via aquatic organisms, water and vectors as equipment, well boats and other vessels.

Vaccination can be effective as prevention in addition to other measures and regulations.

Maria Fernanda Serrano De La Cruz

Saraya Tavornpanich

Thank you!

12, rue de Prony, 75017 Paris, France T. +33 (0)1 44 15 19 49 F. +33 (0)1 42 67 09 87

woah@woah.org www.woah.org <u>Facebook</u>

Twitter

<u>Instagram</u>

Links alle

<u>LinkedIn</u>

YouTube Flickr

World Organisation for Animal Health Organisation mondiale de la santé animale Organización Mundial de Sanidad Animal

