

Brucellosis Control, Eradication and Prevention Strategies

Fabrizio De Massis National, WOAH and FAO Reference Laboratory for Brucellosis Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise

Workshop on the Surveillance, Diagnosis, Control and Prevention of Brucellosis in Arab Countries Riyad, Kingdom of Saudi Arabia, 11-14 November 2024

Strategic objective

 The choice of one of the possible general strategies against a disease condition

- In zoonoses:
 - **Prevention** of human infection
 - **Control** of the disease in animal populations
 - **Eradication** of the disease in animal populations

Control

- All measures used to reduce the occurrence of a disease (or infection) already present in a population
- Main goal of a control program is to reduce the impact of the disease (or infection) on:
 - the human health
 - the **economy** of a region

Eradication

- All measures which eliminate a species of infectious organism
- Main goal of an eradication program is the disappearance of the infectious agent from a given territory
- Eradication is conceptually different from control:
 - it is neither a casual nor an automatic consequence of a control program.
 - organization of activities and sanitary measures adopted are completely different from those implemented for a control program

Prevention

- All measures aimed at excluding the introduction of an infectious agent in a geographical area in which it is absent (foreign diseases)
- All measures aimed at **excluding a disease** from an unaffected population

The choice of a strategy

- The choice of a strategy depends on a number of factors:
 - Epidemiology
 - Patterns of the disease within animal and human populations
 - Economy
 - Available resources
 - Organization
 - Organization and skills of veterinary services
 - Animal husbandry practices
 - Infrastructures
 - Social customs

The choice of a strategy

- Whatever the strategy adopted, it is extremely important to implement an effective surveillance system to:
 - Monitor the program
 - Prevalence and incidence at individual/herd level
 - Incidence of human infection
 - Performance of Veterinary Services
 - Take corrective actions
 - Support decision making

Brucellosis control strategies

- No action on animal populations
 - Treatment of milk
- Vaccination of animals
 - Young and adult animals ("mass vaccination")
 - Only young animals
- Vaccination combined with test-and-slaughter policy
- Test-and-slaughter
 - Slaughter of reactors
 - Total depopulation

Brucellosis control strategies

Strategy	Advantages	Disadvantages
Heat treatment of milk (without any action in animal populations)	The lowest cost	
	No need for efficient	Unable to prevent infection in workers at risk
	veterinary services	
	Only basic technology	Unable to prevent economic losses due to brucellosis in animals
	required	
	Prevention of human infection acquired from the milk	
Mass vaccination (young and adult animals)	Lower cost	Rev1 is a pathogen for humans:
		-vaccine induced abortions (public health risk)
		-excretion of vaccine strain in the milk (public health risk)
	Easy to manage	Economic losses (vaccine induced abortions)
	Herd immunity quickly established	Need for annual vaccination campaigns
		Serological test not able to differentiate infected/vaccinated
		-need for a long transition period before starting any animal testing
		-impossibility to monitor the dynamics of infection occurrence

Vaccination of young animals

Strategy	Advantages	Disadvantages
Vaccination of young animals	Abortions minimized	Herd immunity slowly established
	Lower cost	Need for efficient veterinary services: -no testing (vaccination has to occur before pregnancy)
	No need for technological infrastructure	-multiple access of the veterinary services to the flocks, longer window than the previous strategy to vaccinate animals
Vaccination of young animals and elimination of the infected	Abortions minimized	Herd immunity slowly established
	The herd immunity reduces the incidence of infection and the costs for the elimination of reactors Serological test are able to differentiate infected/vaccinated	Need for a very efficient veterinary services: -need to differentiate vaccinated/infected animals: access has to occur before puberty
	Need for a basic technological infrastructure (laboratory support)	-frequent access of the veterinary services to the flocks are needed, short window to vaccinate young animals

Elimination of infected animals

Strategy	Advantages	Disadvantages
Elimination of Infected animals: control of infection by test and slaughter of reactors	Elimination of the sources of infection for other animals and for humans	High cost in short and long term: usually it is an intermediate phase leading to eradication
		Need for efficient veterinary services : -movement control
		Need for advanced technological infrastructure: -individual animal identification -laboratory support
Elimination of Infected animals: eradication of infection	Elimination of the sources of infection for other animals and for humans	The highest cost for short term, possible long term economic advantages
		Need for efficient veterinary services : -movement control -epidemiological investigation capabilities
		Need for advanced technological infrastructure: -individual animal identification
		-laboratory support -epidemiological support tools and facilities

Control programs

- Any strategy to control *B. melitensis* can take a great advantage from a preliminary vaccination program aimed at reducing the incidence and the prevalence of the infection
 - when Brucellosis has high rates of occurrence
 - when transhumance and/or nomadism are used extensively
- When a significant reduction in flock prevalence has been reached, the control program should be reviewed and alternative strategies may be considered


Vaccine strains

Live Brucella melitensis strain Rev.1

- Is the reference vaccine to immunize sheep and goats at risk of infection from any species of Brucella (*B. melitensis* or *B. abortus*)
- When properly used, Rev.1 vaccine confers a long lasting protection against field infections
- No other vaccine has been demonstrated effective in sheep and goats immunization against Brucellosis

• Live Brucella abortus strain 19 or RB51

- Are the reference vaccines for cattle
- May provide also protection against *B. melitensis* (only S 19)

Brucellosis vaccines for ruminants

- **Strain 19** (S19 or B19) and **Rev.1** are the cheapest internationally recommended vaccines far large and small ruminants, respectively.
- They have be proved to be innocuous and efficient in the target species providing that:
 - they have been produced from the original strains,
 - according to GMP, and
 - that both the seed and the final lots are systematically controlled according to WOAH standards.

Vaccination of adult animals

- It is frequently considered the first step in brucellosis control
 - It is really so easy to manage? Is it really a good choice?
- Rev.1 vaccine is pathogenic for humans and may cause abortion in pregnant ewes
- Live attenuated vaccines are excreted via the milk, abortion and parturition fluids
- Milk from flocks subject to vaccination of adult animals should be heat treated for long periods following the administration of vaccine

Vaccination of adult animals

- In order to reduce the risk of abortion, the vaccination should preferably take place during no-lactation periods,
 - thus implying multiple visits of the flock by the veterinary services
- Annual revaccination campaigns are needed to maintain the required level of herd immunity (replacements)
- The effectiveness of the campaign (=assessment of the decrease in incidence of animal infection) cannot be properly evaluated as the use of serological tests is totally impaired

Control, eradication and prevention

- The three main strategies are not mutually exclusive
- on the contrary they can be arranged in a cascade
- A strategy beginning with a control program, can be changed into an eradication program and, lastly, into prevention of the reintroduction of the disease

Steps of a control/eradication program for brucellosis 1/4

First step: Control program

[Vaccination of adult and young animals]

Vaccination of young animals on voluntary basis

Is the number of herds/flocks participating to the program higher than a predefined threshold?

NO

YES

Compulsory vaccination of young animals

Is the prevalence of the disease below a predefined threshold?

NO

YES

Steps of a control/eradication program for brucellosis 2/4

Test and slaughter on voluntary basis
+

vaccination of young animals

Is the number of herds/flocks

participating
to the program higher
than a predefined threshold?

NO

Test and slaughter on compulsory basis +

vaccination of young animals

Is the prevalence of the disease below a predefined threshold?

NO

Steps of a control/eradication program for brucellosis 3/4

[Test and slaughter and prohibition of any vaccination]

Is the prevalence of the disease below a predefined threshold? Do social and economical conditions allow it?

NO

YES

Start an eradication program (second step)

Steps of a control/eradication program for brucellosis 4/4

Second step: eradication program

Statement of the yearly objectives of the eradication program

Test and slaughter

Movement control and restrictions

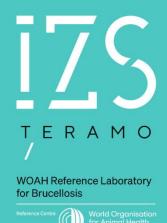
Identification of "problem herds/flocks"

Strict surveillance of "problem herds/flocks"

Surveillance of the whole system

Yearly analysis of achievements and revision of the yearly objectives of the program

When eradication is achieved


Third step: Prevention

Evolution of control programs

- When a **significant reduction in flock prevalence** has been achieved, the control program should be reviewed
 - and alternative strategies may be considered
- A central co-ordination structure is needed to co-ordinate the vaccination campaigns and of follow-up activities, the surveillance, the evaluation of data and the re-planning of the program
- A long-term planning is always necessary to decide the phases of brucellosis control and the transition between phases.
 - The management of such a long-term control campaign usually needs the improvement of the veterinary information and reporting systems

Main Requirements for Brucellosis Control

- Long-term commitment from all parties
- Application of appropriate policies and control strategies
- Reliable and science-based data and information
- Estimation of the real prevalence and incidence both in humans and animals

Main Constraints in Brucellosis Control

- Weak veterinary capacity (laboratory, epidemiology)
- Absence (or non adapted) legal framework for brucellosis control
- Lack of accurate and **reliable information** on the disease (both in humans and animals)
- Control strategies not well defined and programmes not monitored for progress
- Uncontrolled cross border and internal movement of animals
- Lack of intersectorial collaboration

